压敏电阻采购,就选源林电子,型号丰富
压敏电压U1mA
压敏电阻的线性向非线性转变的电压转变时,位于非线性的起点电压正好在I-V曲线的的拐点上,该电压确定为元件的启动电压,也称为压敏电压,是由阻性电流测试而得的。由于I-V曲线的转变点清晰度不明显,多数情况下是在通1mA电流时测量的,用U1mA来表示。对于一定尺寸规格的ZnO压敏电阻片,可通过调节配方和元件的几何尺寸来改变其压敏电压。亦有使用10mA电流测定的电压作为压敏电压者,以及使用标称电流测试者,标称电压定义为0.5mA/cm2,电流密度测定的电场强度E0.5表示,对于大多数压敏电阻器而言,这个值更接近非线性的起始点。3. 漏电流IL压敏电阻器进入击穿区之前在正常工作电压下所流过的电流,称为漏电流IL。漏电流主要由三部分贡献:元件的容性电流,元件的表面态电流和元件晶界电流。一般对漏电流的测量是将0.83倍U1mA的电压加于压敏电阻器两端,此时流过元件的电流即为漏电流。根据压敏电阻器在预击穿区的导电机理,漏电流的大小明显地受到环境温度的影响。当环境温度较高时,漏电流较大;反之,漏电流较小。可以通过配方的调整及制造工艺的改善来减小压敏电阻器的漏电流。研究低压元件的漏电流来源是很重要的,为了促进ZnO晶粒的长大,低压元件中通常会添加大量的TiO2,过量掺杂造成压敏元件漏电流增大[6]~[9],在元件性能测试时容易引入假象,例如压敏电压和启动电压偏离较大。测试元件的非线性时,我们希望漏电流以通过晶界的电流为主。但低压元件普遍存在吸潮现象,初烧成的低压元件漏电流可以保持在4~20μA内,放置8~24h后,元件的漏电流可以增大到200μA。这样的元件的晶界非线性并没有被破坏,但却表现出非线性低,压敏电压也稍有降低的表象。
由于压敏电阻型号太多,篇幅有限,恕不一一呈现,欲知详请,欢迎拨打图片中的咨询电话与我们源林电子联系,谢谢!
压敏电阻采购,就选源林电子,更专业
低压ZnO压敏电阻的特性与晶界的结构状态有密切关系,关于压敏电阻的显微结构,人们也以Bi系ZnO压敏电阻为基础,建立了不同的模型进行研究,如微电阻模型,即将压敏电阻等效为包含在多晶材料中的分立的晶界,还有运用薄膜技术制造的单结等来模拟ZnO
压敏陶瓷的显微结构材料中主要的相是半导化的ZnO晶粒,许多ZnO晶粒直接接触,晶粒间没有其它相,形成了双ZnO-ZnO晶界(同质结)。由于Bi等大尺寸离子在晶界偏析,改变了晶界的结构,电流通过这些晶界,这些晶界称为电活性晶界,电活性晶界是决定压敏电阻性质的关键。在三个晶粒的交界处,有时在两个晶粒(可能有特殊取向)之间,存在粒间相,粒间相在导电过程中大多是电学非活性的。该相主要包括各种添加物形成的化合物。陶瓷材料中的所有成分都可以溶解在粒间相中,在烧结过程中,晶粒交界处可能形成尖晶石晶体,但是它们不参与导电过程。氧化物的改性添加可以改变晶粒电导或晶界的结构及化学状态,尤其是偏析于晶
界的杂质对晶界活性有很大的影响,因而适当的掺杂选择对形成和改善非线性起着很重要的作用,而且晶界势垒是ZnO压敏陶瓷烧结时在高温冷却过程中形成的,烧结工艺直接影响杂质缺陷在晶界中的分布,从而影响晶界化学结构。另外,低压ZnO压敏电阻的晶粒尺寸要足够大,单位厚度的晶界数少,因此低压压敏电阻对显微结构的波动尤其敏感,工艺对低压压敏电阻压敏特性的作用也不可忽视。
源林电子压敏电阻免费取样,一个电话搞定!
您好,欢迎莅临源林电子,欢迎咨询...
![]() 触屏版二维码 |